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Abstract

We examine the existence of foliations without Reeb components� taut foli�
ations� and foliations with no S� � S��leaves� among graph manifolds� We
show that each condition is strictly stronger than its predecessor�s�� in the
strongest possible sense� there are manifolds admitting foliations of each
type which do not admit foliations of the succeeding type�s��

�� Introduction

Taut foliations have been increasingly useful in understanding the
topology of ��manifolds� thanks largely to the work of David Gabai
����� Many ��manifolds admit taut foliations ��	����
����
�� although
some do not �������� To date� however� there are no adequate necessary
or su�cient conditions for a manifold to admit a taut foliation� This
paper seeks to add to this confusion�

In this paper we study the existence of taut foliations and various
renements� among graph manifolds� What we show is that there are
many graph manifolds which admit foliations that are as rened as we
choose� but which do not admit foliations admitting any further rene�
ments� For example� we nd manifolds which admit foliations without
Reeb components� but no taut foliations� We also nd manifolds ad�
mitting C�	� foliations with no compact leaves� but which do not admit
any C�
� such foliations� These results point to the subtle nature be�
hind both topological and analytical assumptions when dealing with
foliations�
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A principal motivation for this work came from a particularly inter�
esting example� the manifold M obtained by ���� Dehn surgery on the
�������� pretzel knot K� This manifold is a graph manifold� obtained
by gluing two trefoil knot exteriors together along their boundary tori�
We show that every essential lamination in M contains a torus leaf� and
therefore every essential lamination intersects the image of K in M �
This tells us a great deal about essential laminations in the exterior of
K� This is discussed in Section 	 below�

The paper is organized as follows� In Section � we give the nec�
essary background on Seifert�bered spaces and graph manifolds� and
introduce the appropriate numerical coordinates for describing them� In
Section � we gather the relevant results on foliations and essential lam�
inations to carry out our proofs� Section � gives the main reults of the
paper� and Section � provides the proofs� Section 	 discusses surgery
on the �������� pretzel knot� Section � nishes with some speculations�

This research was conducted while the authors were visiting the
University of Texas at Austin in ������	� The authors would like to
express their appreciation to the faculty and sta� at that institution for
their hospitality�

�� Coordinates for graph manifolds

A Seifert�bered space M is an S��bundle whose base is a ��orbifold�
More precisely� a Seifert�bered space begins with an honest circle bun�
dle M	 over a compact surface� for our purposes it will su�ce to think
about a compact� orientable� surface� possibly with boundary� crossed
with S�� To some of the boundary components of M	 we then glue a
collection of solid tori� so that the meridional direction of each solid
torus does not correspond to the S��direction on the boundary of M	�
The induced foliation of the boundaries of each of these solid tori by
circles extends� in an essentially unique way� to a foliation by circles of
the solid torus� so that the core of the solid torus is a leaf� This gives
a foliation of M by circles� whose space of leaves � the quotient space
obtained by crushing each circle leaf to a point � is a ��orbifold� Its
underlying topological space is called the base surface of the Seifert�
bering of M � The cone points of the orbifold correspond to the cores
of the solid tori� these cores are called the multiple �bers of the Seifert�
bering of M �Their multiplicity is the number of times nearby bers
intersect a small disk transverse to the multiple ber�
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A manifold M is a graph manifold if there is a collection T of dis�
joint embedded tori so that the manifold M jT obtained by splitting M
open along T is a �not necessarily connected� Seifert�bered space� We
assume that the collection T is minimal� in the sense that for no torus
T in T is M j�T nT � a Seifert�bered space� We adopt the convention
that a Seifert�bered space is not a graph manifold� so T �� �� Since
the bering of a Seifert�bered space is essentially unique ����� we can
give a more constructive approach to minimality� Thinking in reverse�
a graph manifold is obtained by gluing Seifert�bered spaces together
along some of their boundary tori� the glued tori become the collection
of splitting tori T � The collection T is minimal if� in gluing� the homo�
topy class of the circle ber in one boundary torus is not identied with
the class of the ber in the other boundary torus� The only exceptions
to this rule occur when some components are solid tori or T � I � for
solid tori� minimality requires that the meridian in the boundary of the
solid torus be glued to the S��ber� and a T � I can either be absorbed
into a component of M	 �if its ends are not glued together�� or must
have its ends glued together by a map having �on the level of H��T �R��
no integer�valued eigenvectors�

Our results will be stated in terms of the Seifert�bered pieces mak�
ing up the graph manifold� and the gluing maps between their boundary
tori� To do so� we will need a proper set of coordinates�

In ���� Seifert developed numerical invariants of what he called �ber�
ed spaces�� and gave a complete classication of them in terms of these
invariants� They describe the topological type of the base orbifold� and
the way that the the regular bers spin around the multiple bers�
More explicitly� an orientable Seifert�bered space M can be described
as follows� start with a compact surface F of genus g and b boundary
components �the underlying topological space of the base orbifold�� and
drill out k disks �one for each multiple ber of the Seifert�bering�� To
be sure the resulting surface has non�empty boundary� drill out one
more �zero�th� disk� giving a surface F	� Now construct the �unique�
S��bundle M	 over F	 with orientable total space� This bundle has
a �not necessarily unique� cross�section s�F	�M	 �because �M	 �� ���
The images of �F	 in �M	� together with the circle bers in �M	� give
us a system of coordinates for curves in �M	� dening for each simple
closed curve in a component of �M	 a slope in Q�f�g� where the
section denes slope 
 and the ber denes slope �� We then glue
k � � solid tori back onto M	 to obtain M � The gluing of the i�th
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Figure �

solid torus identies the boundary of a meridian disk to some curve
ai�ber� � bi�section� in �M	� These gluings completely describe the
Seifert�bered space� giving us its so�called Seifert invariant

M � ���g� b� a	�b	� a��b�� � � � � ak�bk��

� equals � if F is orientable� � if not� The rational numbers ai�bi
are treated as an unordered �k����tuple� The denominator of each
rational number �in lowest terms� turns out to be the multiplicity of the
corresponding multiple ber� Since our zero�th disk did not correspond
to a multiple ber� its multiplicity is �� so b	���

This invariant is dependent upon the choice of section for M	� the
only way this section can change� however� is by summing along vertical
annuli and tori �see Figure ��� Summing along a torus does not change
the associated invariant� and summing along an annulus changes the
invariant in a very controlled way� it adds and subtracts � each from
the invariants associated to the two components of �M	 containing the
boundary of the annulus�

We can actually remove this ambiguity by exploiting it� by a series of
summings along annuli one of whose boundaries lies over the boundary
of the zero�th disk� we can arrange that 
�ai�bi��� for every i���� � � �k�
essentially� this amounts to gathering the integer parts of the ai�bi into
a	�b	 � a	� This gives us a normalized Seifert invariant

M � ���g� b� a	�b	� a��b�� � � � � ak�bk��
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where ai�bi	Z� and 
�ai�bi� for i���� � � �k� Seifert showed that a Seifert�
bered space is determined up to orientation� and ber�preserving home�
omorphism by its normalized Seifert�invariant� The normalized Seifert�
invariant for M with the opposite orientation is

M � ���g� b� ��a	� k���� �� �a��b��� � � � � �� �ak�bk���

If M has non�empty boundary �b��
�� we can sum along annuli one of
whose components is over the zero�th disk and the other in �M � to
make a	�
� this means that the boundary of the meridian disk is glued
to the boundary of the section� allowing us to extend the section over the
zero�th solid torus� and absorbing the solid torus into the circle bundle
without losing a section� In this case we can� if we wish� delete a	 from
the normalized invariant�

We must also be able to describe the gluings from which we build
our graph manifolds out of their Seifert�bered pieces� A homeomor�
phism between two ��tori is determined by its action on rst homology
H��T � � Z
Z� and is therefore given by an element of SL
�Z�� once
bases for the rst homology of the two tori have been xed� We will use
as our bases for H��T � the section�ber pairs that we have described
above� If a Seifert�bered piece has more than one boundary compo�
nent� there is still some freedom in the choice of section� when this
occurs� we will simply choose one best suited to our needs at that time�

In what follows� we will for notational convenience let �A � �a�b�c�d��
denote the matrix

A �

�
a b

c d

�
�

Simple closed curves � in our boundary tori are represented by Z�
linear combinations �f��s � �����	Z
Zof our ber�section basis�
with � and � relatively prime� we therefore often think of � as being rep�
resented by the rational number ���� A homeomorphism of boundary
tori� represented by the matrix A��a� b� c� d�� sends the curve �������
to the curve

A����� � �a��b��c��d�� �
a�� b�

c�� d�
�

a�
�
� b

c�
�
� d

and so thought of as a map A�Q�Q� it is the map

A�x��
ax� b

cx� d
�
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This function A extends naturally over R� where it describes the
e�ect of the homeomorphism A on the slopes of irrational foliations of

the torus� as well� It has derivative A��x��
�ad� bc�

�cx� d�

� which always has

the same sign �which depends upon ad � bc�det�A��� so A maps any
interval �x�� x
� not containing the asymptote �d�c of A monotonically
to either �A�x��� A�x
�� or its reverse�

�� Taut foliations� essential laminations� and the like

The reader is referred to ��
����������� for basic notions on taut fo�
liations and essential laminations� A codimension�one foliation F of a
��manifold M has no Reeb components if no leaf of F is a compress�
ible torus� The strongest known necessary condition for a ��manifold
M to admit a foliation without Reeb components is that its universal
cover be homeomorphic to R� ����� A foliation F is taut if every leaf
has a closed loop passing through it which is everywhere transverse to
the leaves of F � Taut foliations have no Reeb components� It is an
important result of Goodman ���� that if a foliation is not taut� then
it contains a �not necessarily compressible� torus leaf� Therefore� folia�
tions with no torus leaves are taut� Finally� if a ��manifold admits an
Anosov �ow �see� e�g�� ������ then the stable foliation of the �ow is a
codimension�one foliation whose leaves are �open� planes� annuli� and
M�obius bands� In particular� the foliation has no compact leaves� and
hence no torus leaves� Essential laminations generalize the notion of a
foliation without Reeb components to �partial� foliations� which ll up
a closed subset of a ��manifold M� and provide a convenient framework
in which to discuss the structure of foliations�

Our constructions rely on two main points� Every essential lami�
nation �and therefore every taut foliation� in a Seifert�bered space M
contains a sublamination which is either horizontal �its leaves are ev�
erywhere transverse to the circle bers of M� or vertical �its leaves are
foliated by bers of M�� Also� most �closed� Seifert�bered spaces do
not contain horizontal laminations� Details are given in the proposi�
tions gathered together below�

Proposition � ��
������� If M admits a taut foliation F � and T

is an incompressible torus in M � then T may be isotoped either to be
everywhere transverse to F � or to be a leaf of F �

If T is not isotopic to a leaf of F � then after making T transverse to
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Figure �

F � FjT�F	 may not be an �essential� foliation in M jT�M	� The ob�
struction is a �half�Reeb� component� a leaf of F	 which is a boundary�
parallel annulus �Figure ��� But half�Reeb components can be elimi�
nated by a further isotopy of T � this is most easily seen by the following
minimal surface argument� due to Joel Hass� In ��	�� Hass shows that
F and T can be isotoped so that the leaves of F and T are minimal sur�
faces in M � This immediately implies that T is transverse to the leaves
of F � But it also follows that FjT has no half�Reeb components� since
the annulus leaf of FjT is isotopic rel boundary to the obvious annulus
in T � Since minimal surfaces are area minimizing over compact sets� the
two annuli have the same area� but then swapping them and rounding
corners reduces the area of the torus T while remaining in the same
isotopy class� for example� a contradiction� This argument requires the
foliation to be C�
�� a more general proof may be obtained by following
the lines of ��
������� This result has also been generalized to essential
laminations by Roberts �����

Proposition � ���� LetM be an orientable Seifert��bered space with
non�empty boundary� which does not contain a horizontal annulus� and
let L be an essential lamination in M � meeting �M transversely in a
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lamination L��M containing a Reeb�foliated annulus� Then L contains
a vertical sublamination� which intersects �M � In particular� the Reeb
annulus is vertical�

This means that usually a taut foliation in a Seifert�bered space
meets boundary tori in suspensions� In particular� in the cases we will
be considering� where T is a splitting torus of a graph manifold� the
foliations FjT above will meet T in suspensions� For otherwise they
contain vertical sublaminations on both sides of T � so the gluing map
A has glued the circle ber on one side to the circle ber on the other�
so M is again Seifert�bered� contradicting the minimality of T �

Proposition �a ������������ Every essential lamination in a Seifert�
�bered space �with or without boundary� contains a vertical or horizontal
sublamination�

Proposition �b ������������ Every essential lamination in a Seifert�
�bered space M � whose base orbifold B is S
 with three cone points�
containing no �horizontal� torus leaves� is horizontal� Every essential
lamination in a Seifert��bered space M � with base orbifold D 
 and two
cone points� containing no �horizontal or vertical� annuli or �vertical�
hence ��parallel� tori� is horizontal�

Proposition �c ���� If M is a Seifert��bered space with boundary�
which contains no horizontal annuli� then every essential lamination
which does not contain a vertical sublamination is isotopic to a hori�
zontal lamination�

In particular� for Seifert�bered knot exteriors �i�e�� torus knots�� we
have�

Proposition �d ���� Every essential lamination in the exterior of
a torus knot either contains the �vertical� cabling annulus �or M�obius
band� as a leaf or is isotopic to a horizontal lamination�

Proposition � ����� If F is a C�
� foliation of a connected manifold
M � and L is a minimal set of F consisting of more than one leaf and
such that each leaf of L has trivial linear holonomy� then L � F �

A minimal set is a sublamination L so that every leaf of L has closure
�in M� L� Holonomy is the �germ at 
 of the� injective map between
subintervals of ������ obtained by looking at how the leaves of a foliation
F intersect a small annular fence lying over a closed loop in a leaf of F
�Figure ��� Linear holonomy is the derivative at 
 of this map� A leaf
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Figure �

L of F has trivial �linear� holonomy if for every loop in L the induced
map �or its derivative� is the identity �or ��� Note that linear holonomy
only makes sense for foliations with smooth transverse structure�

Finally� the most important facts we will use restrict the Seifert�
bered spaces which can admit horizontal foliations� Let M be an
orientable Seifert�bered space with orientable base orbifold and nor�
malized Seifert invariant

M � ���g� b� a	��� a��b�� � � � � ak�bk��

As our motivating example� let F be a ��sphere with k open disks
removed� and M�F � S� �so M has Seifert invariant ��
� k� 
��� Label
the components of �M by f��� � � � kg� Suppose M admits a horizon�
tal foliation F � so that for some subset Jf��� � � � kgof the boundary
components F intersects each component in either a foliation by paral�
lel circles or a foliation with no compact leaves� and F meets the other
boundary components in foliations containing Reeb�foliated annuli� The
induced foliations of the boundary components of M can be assigned
a �slope� �i� after coordinates are given for each torus� it is essentially
the rotation number of the return map given by following points on the
slope � curve around the leaves of the induced foliation� until they re�
turn to the slope � curve again� Choose a section of Mnint�N�regular
ber�� so that all of these slopes �i lie in �
���� Relative to this section�
M then has Seifert invariant ��
� k� a	� for some integer a	�
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Proposition � �������
�� Let M be as above� Then F exists if and
only if either some number d of the �i�� and 	�k �a	� d��� or a	���
or ��� and for some integers 
� c � m and some permutation

c�
m
� � � � �

cn
m

of
a

m
�
m� a

m
�
�

m
� � � � �

�

m
� we have

�a���
� ��� �i�
ci
m

if i	J� and �i�
ci
m

if i �	 J� or

�a���	� after replacing each �i by 
��i� ��� holds�

We note in passing that Proposition 	 immediately implies �by start�
ing with a horizontal foliation and then drilling out neighborhoods of
the multiple bers � in this case J�f�����g��

Proposition � �������
�� If g��� b��� and k��� then M admits a
horizontal foliation if and only if a	��� or ��� and

�a	���� there exists integers 
� a � m such that� up to permuta�
tion�

���
a�
b�

�
a

m
�
a

b


�
m� a

m
� and

a�
b�

�
�

m
� or

�a	���� the same condition ��� holds with each aibi replaced by

��aibi��

Similar conditions can be formulated for k��� see �����

This result� together with �������� provided the rst examples of ��
manifolds with universal cover R� which do not admit any foliations
without Reeb components�

Similar results also hold for manifolds with higher genus base orb�
ifold�

Proposition 	 ����� If g��� and b�� �i�e�� �M���� then M admits
a horizontal foliation if and only if ��� �g�� k � a�� ��� �g��

As with the genus 
 case� there is an analogous statement for Seifert�
bered spaces with boundary� We will only need the following special
case�

Proposition 
 ����� Every horizontal foliation in the Seifert��bered
space M � ��
�
� �� �i�e�� M��a once�punctured torus��S�� meets the
boundary torus in a foliation of slope �	���
�� Furthermore� all slopes
in ���
� are realized by horizontal foliations �and can be assumed to meet
�M in a �linear� foliation of �M� if � �����
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�� The results

What we will now show is that� under appropriate conditions� a taut
foliation must meet each Seifert�bered piece of certain graph manifolds
in horizontal foliations� Propositions 	 and �� suitably applied� then
yield restrictions on the gluings which would allow horizontal foliations
to match up� for our foliation to exist in the rst place�

Almost every graph manifold admits codimension�one foliations with�
out Reeb components� if none of the components of M	 is a solid torus�
then taking a horizontal foliation on each component of M	 and �spin�
ning� them �see Figure �� as they approach �M	� we get a foliation
without Reeb components on M � having the tori T as leaves� However�
nothing else comes for free�

TheoremA �������� There exist in�nitely many Seifert��bered spaces
with universal cover R� which admit no foliations without Reeb compo�
nents�

Theorem B� There exist in�nitely�many graph manifolds M which
admit foliations without Reeb components� but no taut foliations � every
foliation contains a separating torus leaf�

Theorem C� There exist three Seifert��bered spaces M for which
every taut foliation must have a �non�separating� torus leaf� and each
space admits taut foliations�

Theorem D� There exist in�nitely�many graph manifolds M which
admit C�	� taut foliations with no compact leaf� but every C�
� foliation
must have a �separating� torus leaf� In particular� each manifold admits
no C�
� taut foliation�

Theorem E� There exist in�nitely�many graph manifolds M which
admit C�	� taut foliations with no compact leaf� but no Anosov �ows�
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What we in fact show is that the torus leaves that must necessar�
ily exist are the gluing tori used to build the graph manifold from its
Seifert�bered pieces� We shall prove each case separately� each re�
quires studying the existence of taut foliations on a di�erent class of
graph manifolds� Basically� by changing the topological type of the
base orbifolds of the Seifert�bered pieces� we will guarantee the ex�
istence of each type of foliation� while avoiding the existence of their
stronger cousins�

The only one of these theorems which really is unsatisfying is The�
orem C� the examples we provide might be thought of as a coincidence�
It is possible that many examples can be found among the graph man�
ifolds obtained from a Seifert�bered space over the annulus� with one
multiple ber� by gluing its two boundary components together� The
analysis of slopes of horizontal foliations over the annulus must be re�
ned� however� this will be addressed in a later paper�

�� The proofs

Theorem B�

In this case we use a graph manifold M consisting of two Seifert�
bered spaces M	� M� with base D
 and two multiple bers� glued
together along their boundaries� These have normalized Seifert invari�
ants

��
� �� ��� �
� and ��
� �� ���� �
�


��

The bering of each piece is unique� and therefore the manifold
resulting from gluing the two together will be Seifert�bered only if the
gluing map preserves the ber direction on each torus� on the level of
matrices� this means that the gluing map is a �shear� A � ���� n� 
� ���

Let F be a taut foliation on M � No leaf of F can be isotopic to the
torus splitting M into its Seifert�bered pieces� because then F induces
a foliation without Reeb components on each piece �minus a regular
neighborhood of its boundary�� transverse to the boundary� With the
exception of ��
������������ which contains a horizontal annulus� these
foliations must therefore be horizontal� by Proposition �b� But this
means F is transversely oriented and contains a separating torus leaf�
hence cannot be taut� Therefore F can be made transverse to the
splitting torus T with no Reeb annuli� and so� again� splits to give
horizontal foliations of each Seifert�bered piece�

Using the �essentially unique� horizontal sections that allow us to
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dene the normalized invariants of M� and M
� we can assign slopes to
horizontal foliations in the �Mi� Let Fi be a horizontal foliation in Mi�
with boundary slope �� By incorporating the normalizing term a	 into
�� Proposition 	 immediately implies�

Proposition� Let Mi� F � Fi� i�
�	� be as above� Then either
���
 or there exists integers 
� c � m and a permutation

c�
m
�
c

m
�
c�
m

of
a

m
�
m� a

m
�
�

m
such that either

�i�
ci
m

� for i�
�	� and ����
�
c�
m
� or


��i�
ci
m
� for i�
�	� and �� ��
����

c�
m
�

Note that for the rst case to be possible� we must have ����
���
since ��m � a�m� �m � a��m� Similarly� in the second case we must
have �������� This therefore gives us only the possibilities�

����
� �� and ���� �which happens to correspond to a horizontal
compact surface� the condition is that the sum of the slopes equal 
��

����
� �� and �	����
��

m
�����
� for some m �since ��� can be at

most �m����m�� or

����
� �� and �	����
�

m
���� ������� �since ������ can� again�

be at most �m����m���

Therefore� in every case� the slope of a horizontal foliation lies in
����
�� Throwing in the possibility of a vertical sublamination which in�
tersects the boundary adds slope �� So to achieve our non�realizability
result� we must merely construct gluing maps A�T�T so that� on the
level of boundary slopes�

���� A�����
��f�g�������
��f�g����

This is quite readily done� for example the map A��
������
�� which
is the map A�x�����x� does this� With a bit of work� it is not hard to
nd many others�

For A��a� b� c� d�� � �	A�����
� means �d�c �	����
�� while
A����	����
� means a�c �	����
�� Focusing on the case that Det�A��ad�
bc��� we then have

A����
� �

�
�a� b

�c� d
�
b

d

�
�

so ���� requires �in addition to ad� bc����

��� �d�c � �� �i�e�� d�c � �� or �d�c � 
 �i�e�� d�c � 
��
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��� a�c � �� or a�c �
� and
��� b�d � �� or ��a� b����c� d� � 
�

The easiest way to arrange this is to make a� d � 
� while b� c � 
�
ad� bc � jajjdj � jbjjcj � �� and jaj � �jcj and jbj � �jdj� For example�

A � �a� b� c� d� � �n� ����nd� d� ������ d� with n � � and d���
or

A � ��n� �����nm�m� n����� �m� �� with n � � and m � �

su�ce� The reader can easily supply more�
The requirement �	���� 
� is of course necessary for the existence

of a horizontal foliation� but never� in fact� su�cient� Exact conditions
depend upon knowing what �� and �
 are� For example� if ������ and
�
���	� then 
�����������m is possible� since ���� ��� � a�m and
��	� ��� � �m � a��m� This is in fact the best possible� since it is
the largest ��m possible� and otherwise one of ������	 would have to
be � ��m� so m����� or �� and each case can be checked separately to
see that it gives no better bounds� This analysis can be applied to any
slopes �� and �
 supplied� after nding one ���� ��m which works�
one can check all smaller m�s to see if a corresponding a lets ���� ��m
work� Then one nds the largest m so that one of ����
� ��m� and
checks it and all smaller m�s to see for what a�s does ���� a�m work�
In this way� one can nd� for example� that for

��������
���	� then �	���������� for
��������
���	� then �	���������� for
��������
���	� then �	���������� for
��������
���	� then �	���������� for
��������
���	� then �	��	������� and for
��������
���	� then �	������ ����

We know� however� from ����� that any element � in the interior of
such an interval can be realized by a horizontal foliation which meets
the boundary in parallel loops of slope � � Therefore� if the gluing map
A has A�interval for rst piece� meet the interval for the second piece
in its interior� then we can glue two such foliations together to obtain a
taut foliation� Such a foliation usually has no compact leaves� in fact�
for only one � can the foliation on a Seifert�bered piece have a compact
leaf �the one which sums with the �i to give 
�� gluing a foliation with
no compact leaves to a foliation all of whose leaves meet the boundary
obviously gives a foliation with no compact leaves�

We also note that the generalization of Theorem B to essential lam�
inations is true� every essential lamination in these manifolds contains
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a torus leaf� The result has the identical proof� since an essential lam�
ination can be made transverse to the gluing torus� so that the split
open pieces are essential� the split open pieces must then be horizon�
tal� or contain a vertical annulus by Proposition �b �again� except for
��
������������� If they are horizontal� then they extend to horizontal
foliations� so their slopes fall into the same restrictive range�

Theorem C�

For this case we will use the three Seifert�bered spaces

��
� 
���� ���� ���� ����� ��
� 
���� ���� ���� �����

��
� 
���� ���� ���� �����

i�e�� the three Seifert�bered spaces having base S
 with a Euclidean
orbifold structure and � cone points� Each of these manifolds contains
a horizontal torus� so can be tautly foliated by horizontal tori� By
Proposition �b� every essential lamination in these spaces is isotopic to
a horizontal one� But every horizontal lamination contains a torus leaf�
Matsumoto ���� outlines a proof of this in the C�
� case� using a result
of Plante ���� on the polynomial growth of leaves of foliations� Plante�s
argument is essentially C���� but the only place this hypothesis is used
is to show that a hypothetical foliation with no compact leaves admits
no null�homotopic loops transverse to the foliation� This assertion fol�
lows easily� however� either from the fact that our foliation is horizontal
�transverse loops must travel non�trivially around the ber direction��
or� more generally� from the C�	� proof of Novikov�s theorem �����

Theorems D and E�
In these cases we will use a graph manifold M consisting of two copies

of Mi��a once�punctured torus��S�� i����� glued together along their
boundaries� They both have normalized Seifert invariant

���� �� 
��

Again� the bering on each piece is unique� so the resulting manifold
is Seifert�bered if and only if the gluing map A is a shear� We therefore
assume that A is not a shear�

For all gluings A� the resulting manifold contains a C�	� foliation
with no compact leaves� The foliation has three parts� In each piece Mi

we put a vertical lamination Li�	i�S�� where 	i is a ��dimensional lam�
ination in the once�punctured torus� with no compact leaves� and having
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Figure �

Figure �

every leaf dense in 	i� Such �measured� laminations are easily built car�
ried by the standard train track in the ��torus �Figure 	a�� For every glu�
ing A� Mn�L��L
� looks essentially like �annulus��S�� if we choose the
standard branched surface B carrying L��L
� then M	�Mnint�N�B��
has the structure of the sutured manifold �annulus��S���torus��I �
with two parallel sutures on each boundary component� By foliating
M	 by annuli� whose boundaries are not parallel to either of the su�
tures� we can� as in ����� spin the leaves in M	 along the annuli between
the sutures to complete �L��L
� to a foliation �Figure 	b��

The key fact in the proof of Theorem D is that no foliation of M
which contains a �vertical� sublamination like one of the Li can admit
a transverse C�
� structure� This is because for every �annular� leaf of
the sublamination� the foliation meets the normal fence over its core �
in one of the patterns of Figure �� there are closed loops limiting on �

on one or both sides� This implies each leaf of the sublamination has
trivial linear holonomy� if the foliation has class C�
�� Proposition � says
that this is impossible� however� since the sublamination does not form
an open set in M �

If a C�
� foliation F ofM has no compact leaves� then Proposition �
and its extension imply that we can make F transverse to the splitting
torus T � so that the induced foliations on the Seifert�bered pieces Mi

are essential� Each therefore contains a vertical or horizontal sublami�
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nation� by Proposition �� If a vertical sublamination misses T � then it
comes from a ��dimensional lamination in the interior of the base sur�
face� It must therefore contain either a closed loop �giving a torus leaf
of F� or a lamination like the one above� so our original foliation cannot
be made C�
�� Hence any vertical sublamination must meet T � and the
slope of the ��foliation is �� on one side� Since Mi does not contain a
horizontal annulus� Proposition � implies that F cannot induce a Reeb
foliated annulus on T � because it would have to be vertical when viewed
from both sides� so M would be Seifert�bered� Proposition �c and the
observation above imply that if the foliation on one of the Mi meets
�Mi in a foliation of slope other than �� then the foliation is horizon�
tal� Proposition � thus implies that the induced slope is in �
���� By
putting together� any C�
� foliation with no compact leaves in M can be
made transverse to T � the induced foliations on Mi meet �Mi in slopes
lying in �
����f�g�

So to build the examples required for Theorem D� we need to nd
gluing maps A��a�b�c�d� for which A��
����f�g����
����f�g���� As
with the proof of Theorem B� this is easily arranged� Since A��d�c����
A����a�c� A�
��b�d� and A�����a�b���c�d�� after choosing
det�A��ad�bc��� �for convenience� so that A��
��� will be �A����A�
����
we need

�d�c �	 �
� ��� a�c �	 �
� ��� and either b�d � 
 or �a� b���c� d� � ��

One easy way to do this is to choose c�
� d�
� a�
� and b�
� for
example�

A������n�k���nk� with n�k��� or

A��������n�����k�����k�n��nk� with n�k�
� work�

Because in each list the matrices have di�erent traces� they are not
conjugate� and so the glued manifolds are distinct�

Theorem E� on the other hand� follows immediately from the follow�
ing theorem of Barbot�

Theorem ���� Suppose that M is as above� Then M admits an
Anosov �ow if and only if the gluing map A is of the form A����kn�
��� k��n�kn� ��� kn� �� where n�
 or 	�

Every other possible gluing contains the foliation with no compact
leaves that we built above� but does not admit any Anosov �ows� By
choosing gluing maps A which do allow two horizontal foliations to be
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glued together� we can in fact nd manifolds admitting C�
� foliations
with no compact leaves� which admit no Anosov �ows�

�� Surgery on the ������	� pretzel knot

The �������� pretzel knot� also known as the Fintushel�Stern knot� is
one of the most well�studied knots in the ��sphere� second perhaps only
to the Figure�� knot� Its exterior X�K� � S�nint�N�K�� bers over the
circle� with pseudo�Anosov monodromy� and is therefore hyperbolic� By
Thurston ��
�� all but nitely�many Dehn llings alongK are hyperbolic�
Fintushel and Stern ���� rst showed that ���� surgery on K yielded a
lens space� providing the rst example of such behavior in a hyperbolic
knot� Bleiler and Hodgson ��� have since determined all of the surgeries
along K which have nite fundamental group� With respect to the
standard meridian�longitude coordinates on �X�K�� they are �� ���
��� and ��� In addition� it has long been known ���� that the manifold
M obtained by ���� surgery on K contains an incompressible torus�
This was� in fact� the rst non�integral surgery on a hyperbolic knot
�whose only closed incompressible surface in X�K� is �X�K�� which
was shown to contain an incompressible surface� Eudave�Mu noz ����
has since shown that M is a graph manifold� obtained by gluing a left�
handed and a right�handed trefoil knot exterior XL and XR together
along their boundaries� Since trefoil knot exteriors are Seifert�bered�
with base a ��disk and two multiple bers� M can be analyzed as in our
proof of Theorem B�

The gluing map A from �XL to �XR is most easily described in terms
of the standard meridian�longitude coordinates for �XL and �XR� By
Eudave�Mu noz ����� A glues the meridian 
L of �XL to the circle ber
of the �induced� bering of �XR� and glues the circle ber of �XL to
the meridian 
R of �XR� The ber in �XL is represented by ��
L�	L
in the standard coordinates �where 	L is the longitude in �XL�� while
the ber in �XR is represented by �
R�	R� This is perhaps most easily
seen by comparing the boundary of a Seifert surface in XL� say� to the
boundary of the obvious M�obius band in XL� which is the circle ber in
�XL �since the M�obius band cuts XL into a solid torus�� see Figure ��

Therefore� the gluing map A sends 
L to �
R�	R� and sends
��
L�	L to 
R� This means that 	L is sent to ��
R��	R� In other
words� with respect to the standard meridian�longitude coordinates on
�XL and �XR� A is the matrix �����������
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Figure �

Given an essential lamination L in M � we can� as before� isotope
it so that L is transverse to the splitting torus� and L�XL and L�XR

are essential in XL and XR� In each piece it is therefore� by Propo�
sition �d� either horizontal or contains a vertical sublamination� The
slopes realized by horizontal essential laminations in XL and XR are
��
�� in the standard meridian�longitude coordinates� ������ for XL

and ������ for XR� But it is easy to see that the associated fractional
linear transformation A�x����x������x��� sends ������ to ������	��
since ������ does not contain the vertical asymptote �� of A�x�� and
det�A����� so A�x� is decreasing on ������� Therefore the image is
disjoint from ������� and two horizontal laminations cannot be glued
together to form an �essential� lamination in M �

Finally� a lamination cannot be built from laminations containing a
vertical sublamination in either piece� since a vertical lamination must
consist� by Proposition �d� either of a boundary parallel torus �our de�
sired conclusion� or a collection of annuli separating the two multiple
bers of the bering of the knot exterior �and perhaps a M�obius band
containing the multiplicity � ber�� Such an annulus separatesXL �say�
into two solid tori� which the lamination meets in horizontal leaves� It
therefore meets �XL � T in vertical loops �from the vertical sublami�
nation� with Reeb type leaves in between� But since the ber in �XL is
glued to the meridian in �XR �and vice versa�� this means that L meets
�XR � T �say� in meridian loops with Reeb leaves in between� But this
contradicts Proposition �d�

Therefore� no essential laminations in XL and XR can be glued to�
gether to give a lamination in M � unless one contains a parallel copy of
the splitting torus� In other words� every essential lamination in M con�
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tains the splitting torus as a leaf� Since this torus intersects the image
of K �it can� in fact ����� be made to intersect it in exactly two points��
we nd in particular that every essential lamination in M intersects the
image of K� Therefore� there is no essential lamination in S�nK �i�e��
no essential lamination L in S�nint N�K� � X�K� with L��X�K� � ��
which remains essential after ���� surgery along K�

It was shown by Christy ��� that the essential lamination in X�K��
obtained by taking the suspension of the stable ��dimensional lamina�
tion for the monodromy of the bering of X�K�� has degeneracy slope
�see ����� equal to ����� This lamination therefore remains essential un�
der every Dehn surgery along K� except those with surgery coe�cient
of the form �� or �� or� �� � ��n� for n��� Among these surgery
coe�cients� the only ones which give manifolds known not to contain
essential laminations are�������� and ��� since these manifolds all have
nite fundamental group� It has been a long�standing open problem �as
long�standing as anything in a eld that is only ten years old can be�
anyhow� to show that all of the other surgeries yield laminar manifolds
�or to prove that one of them doesn�t � this would probably yield the
rst example of a hyperbolic� non�laminar� ��manifold�� Several people
have attempted to do this by nding an essential lamination in S�nK
with degeneracy slope ��
� since ���� the lamination would then remain
essential under every non�integral surgery� The above result� however
shows that this is impossible� it could not remain essential under ����
surgery� In fact� the result also shows that every essential lamination in
S�nK must have degeneracy slope with intersection number 
 or � with
the slopes�� ��� ��� ��� and ���� �since otherwise the lamination would
remain essential in one of the resulting manifolds�� The only slope for
which this is true is ����� so every essential lamination in S�nK has
degeneracy slope �����

Corollary F� Every essential lamination in the exterior X�K� of
the ���� �� ���pretzel knot� disjoint from �X�K�� has degeneracy slope

�
�

These observations leave open the possibility� however� of nding
essential laminations in X�K�� which meet �X�K� in curves with these
missing slopes� and which remain essential after Dehn lling and cap�
ping o� the boundary curves with disks� This� for example� is how the
laminations of ��
����	� are constructed� Any such construction must be
somewhat subtle� however� since any lamination constructed for slope
���� �and no other� since by ���� every other missing slope gives a non�
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Haken manifold� must contain a compact leaf�

�� The future

This paper demonstrates that the set of manifolds admitting the
various topologically useful classes of foliations are all distinct� This
suggests that a workable necessary and su�cient condition for the ex�
istence of these classes of foliations will be di�cult� if not impossible�
to nd� This contrasts with the case of embedded incompressible sur�
faces� for example� which admits a fairly succinct �although perhaps not
practical� existence criterion� a ��manifold M contains an incompress�
ible surface if and only if the fundamental group of M is a free product
with amalgamation or HNN extension over a surface group ���������� We
should also point out that the work on essential laminations and folia�
tions in closed Seifert�bered spaces ���������������������
��� which we have
relied on throughout this work� has already demonstrated that� among
non�Haken Seifert�bered spaces� the �dividing line� between those which
do have essential foliations and those which don�t �������
� is extremely
complicated� One good open question� in fact� is to nd an explanation
�in terms of the fundamental group� perhaps� for this �dividing line��

For a hyperbolic ��manifold M� however� many of the distinctions we
have explored here disappear� A closed hyperbolic ��manifold contains
no incompressible tori� so a foliation without Reeb components has no
torus leaves� and therefore is automatically taut� Therefore� only a few
of these distinctions survive�

Question� Does every hyperbolic ��manifold admit a taut folia�
tion!

If a hyperbolic ��manifold admits a taut foliation� then it admits a
foliation with no compact leaves �����

Question� Does every tautly�foliated hyperbolic ��manifold admit
an R�covered foliation!

A foliation is R�covered if the space of leaves of the foliation� after
lifting to the universal cover of M� is the real line R� Tautness is a
necessary condition for a foliation to be R�covered� Among non�Haken
Seifert�bered spaces� every taut foliation is R�covered ����

Question� Does every tautly�foliated hyperbolic ��manifold admit
a non�R�covered foliation!
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We note that the answers to these last two questions are �No�� in
general� there are� again� counterexamples among graph manifolds� see
�	��

The answers to these questions remain out of the reach of present
technology � our current understanding of the structure of taut foliations
of hyperbolic ��manifolds is rather limited� The best results to date
are those of Fenley ����� ��	� who has some interesting results on the
structure of stable foliations of Anosov �ows on hyperbolic manifolds� as
well as on the limit sets of leaves of foliations in hyperbolic ��manifolds�
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